$$
\begin{align*}
& \text { [> restart: } \\
& \text { Conor Solner } \\
& \text { Coordinating Seminar } \\
& \text { Newtons Second Law : Hang TIme } \\
& >g:=32 \text { : } \\
& N S L:=\operatorname{diff}(m \cdot y(t), t, t)=-m \cdot g \\
& N S L:=m\left(\frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} y(t)\right)=-32 m \tag{1}\\
& \overline{>} \text { sol }:=\operatorname{dsolve}(\{N S L, y(0)=0, \mathrm{D}(y)(0)=v\}) \\
& \text { sol }:=y(t)=-16 t^{2}+t v \tag{2}\\
& \text { > } y:=\operatorname{unapply}(\text { rhs }(\text { sol }), t) \\
& y:=t \rightarrow-16 t^{2}+t v \tag{3}\\
& \stackrel{>}{>} \operatorname{tmax}:=\operatorname{solve}(\operatorname{diff}(y(t), t)=0, t) \\
& \operatorname{tmax}:=\frac{1}{32} v \tag{4}\\
& >v m h:=y(\operatorname{tmax})=2.5 \\
& v m h:=\frac{1}{64} v^{2}=2.5 \tag{5}
\end{align*}
$$

What is the velocity when time is maximum?

$$
\begin{align*}
& {\left[\begin{array}{l}
>\text { answer }:=\operatorname{rhs}(\text { solve }(\{v m h, v>0\}, v)[1]) \\
\text { answer }:=12.64911064
\end{array}\right.} \\
& {\left[\begin{array}{l}
>h:=\operatorname{unapply}(y(t), t) r \\
\\
\gg \text { solve }(\operatorname{diff}(h(t), t)=0, t) \\
\\
\end{array} \quad \frac{1}{32} v\right.} \tag{6}
\end{align*}
$$

What is the time to reach maximum velocity?
$\stackrel{L}{\left[\text { tconfirmed }:=\frac{v p o s}{32}\right.}$

$$
\text { tconfirmed }:=0.3952847075
$$

What is the maximum Hang Time an athlete experience?

$$
\begin{align*}
& {[>\text { answer } 2:=\text { eval }(2 \cdot \text { tconfirmed })} \\
& => \tag{10}
\end{align*} \text { answer } 2:=0.7905694150
$$

